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A primer on standardized testing:
History, measurement, classical test theory, item response theory, and equating
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Objective: This article presents health science educators and researchers with an overview of standardized testing in
educational measurement. The history, theoretical frameworks of classical test theory, item response theory (IRT), and
the most common IRT models used in modern testing are presented.
Methods: A narrative overview of the history, theoretical concepts, test theory, and IRT is provided to familiarize the
reader with these concepts of modern testing. Examples of data analyses using different models are shown using 2
simulated data sets. One set consisted of a sample of 2000 item responses to 40 multiple-choice, dichotomously scored
items. This set was used to fit 1-parameter logistic (PL) model, 2PL, and 3PL IRT models. Another data set was a sample
of 1500 item responses to 10 polytomously scored items. The second data set was used to fit a graded response model.
Results: Model-based item parameter estimates for 1PL, 2PL, 3PL, and graded response are presented, evaluated, and
explained.
Conclusion: This study provides health science educators and education researchers with an introduction to
educational measurement. The history of standardized testing, the frameworks of classical test theory and IRT, and the
logic of scaling and equating are presented. This introductory article will aid readers in understanding these concepts.
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INTRODUCTION

In the 20th century, the concept of public protection
dictated implementation of licensing laws to those profes-
sions having a direct relationship to public health and safety.1

A plethora of discipline-specific prelicensure standardized
assessment instruments (tests) exists to ensure compliance
with the disciplinary standards. In the chiropractic profes-
sion, every year thousands of students take the prelicensure
Part I, II, III, and IV examinations of the National Board of
Chiropractic Examiners. As with any examination, some
students feel that these standardized tests are unfair and have
little relevance to clinical practice. Even faculty members
often understand little about the boards. This article aims to
provide an introduction to the world of standardized
assessment not only for chiropractic educators but also for
any health sciences educator or educational researcher.

OVERVIEW AND SIMULATED ANALYSES

History of Standardized Testing
The early history of standardized testing goes back

several centuries. In the 3rd century BCE in imperial

China, to qualify for civil service, Chinese aristocrats were
examined for their proficiency in music, archery, horse-
manship, calligraphy, arithmetic, and ceremonial knowl-
edge. Later, the examinations tested knowledge of civil
law, military affairs, agriculture, geography, composition,
and poetry.2,3 Those who passed these exams were
qualified to serve the Chinese emperor and his family.
The exams were accompanied by an atmosphere of
solemnity and attention to the young nobles who dared
to be scrutinized for the prestigious positions. The topics
of the exams were frequently provided by the emperor, and
he often examined the applicants during the final stage of
the competition.

In the late 1880s, Francis Galton was inspired by the
work of his cousin, Charles Darwin, regarding the origin
of species and became interested in the hereditary basis of
intelligence and the measurement of human ability. Galton
developed the theoretical bases of testing—the application
of a series of identical tests to a large number of individuals
and the statistical processing of the results.4 In 1904,
Alfred Binet, a Parisian with a doctorate in experimental
psychology, was commissioned by the French ministry of
education to study schoolchildren who were developmen-
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tally behind their peers. His task was to develop a method
to identify children who were not benefiting from inclusion
in regular classrooms and required special education.5 For
this purpose, Binet and his associate, Theodore Simon,
designed and administered a 30-item instrument arranged
by difficulty that tested ability for judgment, understand-
ing, and reasoning.1

The field of testing developed rapidly during World
War I (1914–1918), when the problem of professional
selection for the needs of the army and military production
became a priority. During that time, leading psychologists
organized the Army Alpha Examination to test army
recruits.6 Their success further inspired psychologists to
advocate for civilian testing. During the 20th century,
large-scale assessment in the United States became a
necessity for college admissions and school accountability.
The reliance on standardized tests for college admission
was a response to the increasing number of students
applying to colleges, and it became a tool to tighten the
gates in the face of limited resources.7

In the 21st century, standardized tests constitute an
inseparable part of American culture. Assessment instru-
ments are administered in a wide range of settings: K–12,
college admission, academic progression, professional
licensure, clinical credentialing, industrial, forensic, and
many more. ‘‘Gatekeepers of America’s meritocracy—
educators, academic institutions, and employers—have
used test scores to label people as bright or not bright, as
worthy academically or not worthy.’’8 The study of
measurement processes and the methods used to produce
scores in testing evolved into a specialized discipline—
psychometrics, a combination of education, psychology,
and statistics.9

Critique of Standardized Tests
As the use of standardized tests for high-stakes exams

increased, so did the critique of their use.10 Counsell11

conducted a case study exploring the effect of the high-
stakes accountability system on the lives of students and
teachers. The findings revealed that the culture of testing
introduces a continuum of fear and ethical and moral
dilemmas related to the pressure experienced by instructors
when schools use test scores as a measure of accountabil-
ity. Often, instructors decontextualize the material to the
students with an intention to artificially inflate the test
scores.12 Such a phenomenon is known to researchers as
‘‘teaching to the test’’ and is often controlled for by
psychometric procedures.13

Kohn14 claimed that admission tests (such as the SAT
and ACT) are ‘‘not very effective as predictors of future
academic performance, even in the freshman year of
college, much less as predictors of professional success.’’
Zwick and Himelfarb15 predicted 1st-year undergraduate
grade-point average (FYGPA) in 34 colleges from high
school GPA (HSGPA) and SAT scores using linear
regression models. The average R2 for these regression
models was .226 (this coefficient indicates the amount of
variance in the regression outcome explained by the linear
combination of the predictors). However, in most of the
models, the HSGPA was the predictor that accounted for

the majority of variance. Zwick and Himelfarb stated,
‘‘The only substantial increase in R2 values occurred when
SAT scores are added to a prediction equation that
included self-reported HSGPA.’’

Furthermore, the study highlighted the overprediction
(the predicted outcomes were higher than actual) of
FYGPA for African American and Latino students and
the underprediction (the predicted outcomes were lower
than actual) for Caucasian and Asian students when high
school grades and SAT scores were used. Zwick and
Himelfarb concluded that these errors in prediction were
partially attributed to high school socioeconomic status—
African American and Latino students are more likely
than Caucasian students to attend high schools with fewer
resources.

Measurement and Classification
Two processes are involved when a test is administered—

measurement and classification. Measurement is the process
of assigning numerical values to a phenomenon. This is a
thorny process because numbers are used to categorize the
phenomenon, and numerical scales hold qualities such as
differentiation (1 is different from 2), order (2 is higher than
1), equality of intervals (the interval between 1 and 2 is
equal to the interval between 2 and 3), and a 0 point, which
is not always a true absence of value. By assigning
numerical values to categories, the rules associated with
numbers are carried over to the properties of the measured
phenomenon and may not always correspond to the actual
properties of the measured objects.

Stevens16 developed a hierarchy of measurement scales:
nominal, ordinal, interval, and ratio. The nominal scale is a
system of measurement where numbers are used for the
purpose of differentiation only. For example, the numer-
ical part of a street address or apartment number is
numbered on the nominal scale. The number on the jersey
of a football player is used to differentiate the player from
others, and it too is on the nominal scale. The categorical
coding of most demographic variables, such as gender,
ethnicity, and political party affiliation, constitutes nom-
inal measures.17 Since nominal enumeration is used only to
distinguish categories, the numbers assigned to the
categories do not follow any order or presume interval
equality. The nominal scale is the most rudimentary form
of measurement.

The ordinal scale is a measurement scheme where, in
addition to simple differentiation (the attribute specified by
the nominal scale), the numbers represent a rank order of
the measured phenomenon. Examples of ordinal measures
are rankings in the Olympic Games, progressions of the
spiciness of a dish in a restaurant (mild, spicy, and very
spicy), military rank, birth order, and class rank. Another
example of an ordinal measure is the emoji-face pain scale
commonly used in health care. An ordinal scale establishes
the order of categories but lacks the ability of comparison
between the categories’ intervals.

The subsequent scale in Stevens’s hierarchy is the
interval scale, which, in addition to differentiation and
rank order, establishes the property of interval equality.
On this scale, the intervals between adjacent points are
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presumed to be equal. One example of the interval scale is
a number line, where, going from left to right, each
subsequent number is higher in rank, and the intervals
between adjacent numbers are equal across the entire
domain of the line. Another example is a temperature scale
measured in Celsius or Fahrenheit. In the social sciences,
items commonly measured on the Likert scale, ranging
from ‘‘strongly disagree’’ to ‘‘strongly agree,’’ for the
purposes of statistical analysis of opinions, are assumed to
be on the interval scale.

The highest measurement scale in the hierarchy is the
ratio scale. In addition to the properties established by the
nominal, ordinal, and interval scales, a ratio scale has a
true 0 point (complete absence of value). Neither the
number line nor the Celsius or Fahrenheit temperature
scales have an absolute 0 point. The 0 on the number line is
nothing more than a separation between the negative and
positive numbers and can be rescaled with a simple linear
transformation. The 0 on the temperature scale (in Celsius)
is also not an absence of value but rather a point at which
water becomes ice. An example of a ratio scale is the
Kelvin temperature scale, where 0 indicates a complete
absence of temperature.

Every assessment is designed to measure and classify
the test takers’ performance in a specific domain.
Depending on the assessment design, the scores can be
on the ordinal, interval, or even ratio scale. Then,
depending on the score obtained on the test, a test taker
can be classified into the mastery or nonmastery categories
(in the case of professional testing) or into basic, proficient,
or advanced levels of performance in the case of K–12.18

When test takers present themselves at the test site for
an exam administration, they arrive as members of a single
population. The goal of the test designer and test
administrator is to separate the test takers into subpopu-
lations according to the intended users’ objectives for the
scores. Thus, each item on the test is a classification tool
that helps make the categorization decision regarding each
individual test taker. With each item that is answered
correctly, a test taker is more likely to be classified into the
higher category, while each incorrect response increases
the likelihood of classification into a lower category.

Reliability and Validity
The quality of a measurement instrument is expressed in

terms of the reliability and validity of the scores collected
by this instrument. Reliability is the consistency with
which a measure, scale, or instrument assesses a given
construct, while validity refers to the degree of relation-
ship, or the ‘‘overlap’’ between an instrument and the
construct it is intended to measure.13 The traditional
meaning of reliability is the degree to which respondents’
scores on a given administration of a measure resemble
their scores on the same instrument administered later
within a reasonable time frame. Kerlinger and Lee19

suggested 3 approaches to reliability: stability, lack of
distortion, and being free of measurement error. The first 2
definitions are addressed in this section; the third definition
requires an introduction to classical test theory20,21 and is
addressed later.

If a measurement instrument or a comparable form is
administered multiple times to the same or a similar group
of people, we should expect similar scores. This is called
temporal stability—the degree to which data obtained in a
given test administration resemble those obtained in
following administrations. When an assessment is con-
ducted, a score user expects assurance that scores are
replicable if the same individuals are tested repeatedly
under the same circumstances.9 There are 2 techniques to
assess temporal stability: the test–retest method and the
parallel forms method.

In the test–retest method, a set of items is administered
to a group of subjects, then the test is readministered later
to the same group. The correlation of the 2 sets of scores is
then measured. A higher correlation between the scores
indicates higher reliability.

In the parallel forms method, 2 different forms of the
same test are constructed, both measuring the same critical
trait (knowledge base). Next, both forms are administered
to the same group of test takers at the same test session. A
higher relationship between the 2 sets of scores indicates
higher reliability. However, it is very difficult to correctly
construct equivalent test forms, and a weak relationship
between the 2 sets of scores may actually reflect a lack of
equivalence.

Another component of reliability is a scale’s internal
consistency. The lack of distortion or internal consistency
of an instrument refers to the extent to which the
individual components of a test are interrelated and thus
produce the same or similar results. Items on the test
should ‘‘hang together.’’ One of the earlier techniques to
establish the internal consistency of a scale is known as the
split-half reliability.22 The test is randomly split in half,
and the 2 sets of test scores are compared to each other.
Once again, a closer relationship between the 2 sets of
scores indicates a higher test reliability.

Cronbach6,23 developed the coefficient alpha, an alter-
native to the once common split-half technique, which has
become the most universal technique for estimating
internal consistency reliability. His coefficient alpha
assesses reliability as a ratio of the summed variances of
individual items and the total variance for the instrument,
subtracted from 1 and adjusted for the number of items in
the instrument. Cronbach’s alpha coefficient is computed
as follows:

a ¼ k

k � 1
1�

Xk

i¼1
r2

i

r2
T

0
@

1
A ð1Þ

where a is the estimate of the instrument’s internal
consistency reliability; k is the number of items on the
instrument; i is the item indicator, i¼ 1, 2, . . ., k; r2

i is the
variance of item i; and r2

T is the total variance of the scale.
Cronbach’s alpha ranges from 0 to 1.0 with values closer

to 1.0 indicating higher reliability. The internal consistency
of a test is considered acceptable if the alpha coefficient is
above .70.24,25 An alternative interpretation of Cronbach’s
alpha is the mean of all interitem correlations. If a
correlation coefficient is squared, it becomes a coefficient
of determination, which indicates the proportion of vari-
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ability shared between 2 variables.19 Thus, when .70 is
squared, it becomes .49. This means that at least half of the
variability in the responses collected by the instrument is
explained by the instrument’s internal consistency.

Reliability alone is not sufficient to establish the quality
of a test. A good test must also measure what it was
designed to measure, which is often referred to as validity.
The validity of a scale refers to the extent of correspondence
between variations in the scores on the test and the variation
among respondents on the underlying construct being
tested.13 The process of validation is closely related to the
intended use of the scores. For example, scores collected on
a test of general anatomy given in English ideally depict the
knowledge of anatomy possessed by a test taker. Yet, if a
test is given to a sample of English-language learners, a part
of the variability in scores can be explained by English
proficiency (or lack thereof). Therefore, the scores collected
by the same test in an English-first population of test takers
may have higher validity than scores collected from English-
language learners.

Importantly, the validity of a test is a matter of degree,
not all or none. Further, the existing evidence of validity
may be challenged by new findings or by new circum-
stances. Unavoidably, validity becomes an evolving
property, and test validation is a continuous process.26

This process of validation requires ongoing empirical
research efforts outside of those used for reliability. The
methods employed for establishing validity of a test
include a thorough analysis of the content of the test
during the phase of its scale development and quantitative
assessment of the relationship between the test scores and
the criterion that has been tested.2 The degree of accuracy
with which test scores relate to their intended use may be
established by studying the predictive validity.

Test scores with low validity can still be reliable, while
reliability is a prerequisite for validity. Establishing
reliability is more of a technical matter, whereas validity
requires much deeper thinking and consideration; it is
much more than a statistical procedure. Continuous
vigilant consideration of each item in terms of content
representation and its statistical performance as well as the
reflection on the populations of test takers are all essential
for confirming a test score’s validity.

Classical Test Theory
Any measurement is an inference, and any statistical

inference is subject to error. All measurements are
susceptible to random error and, if repeated, may vary.
To comprehend the size and the origin of the error, ideally,
the measurement should be repeated several times, as the
average of a series of measurements is more precise than
any individual measurement by a factor equal to the
square root of the number of measurements.27 Classical
test theory (CTT) postulates that any observation is a
linear combination of the true score and error. The
fundamental equation of CTT states the following:

Oi ¼ Ti þ Ei ð2Þ

where Oi is the observed score for an examinee i, Ti is the
true score for that examinee, and Ei is the error in the

measurement. Thus, every test could be seen as a
combination of 2 hypothetical components: the true score
(true knowledge of the material tested) and the deviations
from the true score due to random or systematic factors.
Any systematic errors in measurement become part of an
individual’s true score and affect the validity since the
score is no longer an estimate only of the latent trait but
also of the systematic variability. The random errors, on
the other hand, affect the reliability of the score and create
a distortion in the observed score’s precision over repeated
administrations of the test.

Test scores can be described as random variables.9 A
random variable X is an outcome of a process that is
determined by a probability distribution. The term
‘‘expectation’’ or ‘‘expected value,’’ denoted as E(X), is
used to signify the mean of the probability distribution.
Assuming that all systematic variability in the observed
score is accounted for by the true score and the error
component consists of only random error, we can specify
the distribution of the errors as follows:

ei ; Nð0;r2Þ ð3Þ

which means that if examinee i takes the exam an infinite
number of times, by definition of random, the same amount
of error will be distributed above and below the true score.
Thus, the error will average at 0. The relationship between
the observed score and the true score can be clarified by
taking the expectation of the observed score:

EðOiÞ ¼ EðTiÞ þ EðEiÞ ð4Þ

Meanwhile, if the expectation of error is 0 (see equation
3) and the expected value of the observed score is the true
score,

EðOiÞ ¼ EðTiÞ þ 0 ¼ EðTiÞ ¼ Ti ð5Þ

Then it follows from equations 2 and 5 that

EðEiÞ ¼ EðOiÞ � EðTiÞ ¼ Ti � Ti ¼ 0 ð6Þ

There are 3 other fundamental assumptions made by
CTT: it is assumed that the correlation between true score
and error is 0, that the correlation between error score on
test 1 and error score on test 2 is 0, and that the correlation
between the true score on test 1 and the error score on test
2 is 0.

The definition of reliability can be formulated in the
framework of CTT if the following extension is made to
the equation 2:

VarðOiÞ ¼ VarðTiÞ þ VarðEiÞ ð7Þ

where Var(Oi ), the observed score variability, is parti-
tioned into the true score variability, Var(Ti ), and the
variability of error, Var(Ei ). Reliability is the proportion
of the true score variability to the observed score
variability or the proportion of the error variability to
the observed score variability subtracted from 1.0:

qO1;O2 ¼
VarðTiÞ
VarðOiÞ

¼ 1� VarðEiÞ
VarðOiÞ

ð8Þ

with qO1,O2 being the reliability coefficient.
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The variability of the scores, as viewed by CTT,
provides the explanation for score stability. Test takers
who are not satisfied with their exam scores may choose to
repeat the test. While an examinee repeating a test is
interested in the increase of the observed score, psycho-
metricians consider any increase in the true score
separately from the increase in the error component. If a
test is reliable, it is very hard to increase the true score
component when the assessment is repeated over a short
period of time. Only long-term learning is associated with
an increase in the true score component.28,29 At the same
time, the scores for a repeat test taker will vary from 1
administration to another, and, usually, improved perfor-
mance may be seen on a second measurement occasion,
even if different questions are used.12 This is due to the
known phenomenon called the practice effect,30 which is
defined as an increase in an examinee’s test score from 1
administration of the same assessment to the next in the
absence of learning, coaching, or other factors that are
known to increase the score.31

Other sources of measurement error may include
temporary or momentary fatigue, fluctuations of memory
or mood, or fortuitous conditions at a particular time that
temporarily affect the outcomes measured by the test.19

Test scores may also be influenced by the content of the
material that appeared on the test, guessing, state of
alertness, and even scoring errors.

Another likely explanation of the differences in scores
from 1 measurement occasion to another is the phenom-
enon known as regression to the mean.32 Each form of a
test will tend to favor certain students but not others in a
nonsystematic way. Students may get a test with items
representing the material they are most familiar with or
have studied the most. However, students who were
favored by 1 form of the test are not likely to be favored
by another when they retake the test. Therefore, the scores
obtained on the second or third testing occasions will tend
to be closer to the mean than the scores obtained on the
first testing occasion.33

Even though it is never possible to measure exactly how
much an increase in the observed score is influenced by the
error component, CTT allows for estimation of the
standard error of measurement (SEM), which is a function
of the standard deviation of the set of observed scores and
the reliability of the test:

SEM ¼ SDO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q̂O1;O2

q
ð9Þ

where SDO is the standard deviation of the set of observed
scores and q̂O1,O2 is an estimate of reliability. Estimates of
the SEM can be helpful in interpreting increases in
individual test scores.

Item Response Theory
Item response theory (IRT) is a collection of statistical

and psychometric methods used to model test takers’ item
responses.34 The initial development of IRT models took
place in the second half of the 20th century. First, Rasch35

developed a model for analyzing categorical data. Next,
Lord and Novick21 wrote chapters on the theory of latent

trait estimation, which gave birth to a new way of data
analysis in testing. Prior to the development of IRT, the
testing industry relied on CTT methods for modeling test
item responses. Since then, IRT has made its way into
every aspect of the testing industry. IRT methods are used
today in test development, item banking, data analysis,
analysis of differential item functioning, adaptive testing,
test equating, and test scaling.36

The early IRT models were first developed for
dichotomously scored item responses (eg, 0 ¼ wrong, 1 ¼
right). These models included the 1-parameter logistic
model (1PL), the 2-parameter logistic model (2PL), and
the 3-parameter logistic model (3PL). Common assump-
tions for the early IRT models include unidimensionality—
only 1 latent trait is necessary to explain the pattern of
item-level responses37—and local independence—after ac-
counting for the latent trait, there is no dependency among
the items.36 Later, models for polytomous responses were
developed: the partial credit model38 and the generalized
partial credit model.35

In the early 1990s, significant efforts were made to
develop multidimensional IRT models39,40 and models
that were able to account for item dependency over and
above the dependency explained by the common trait.41,42

Due to the introductory nature of this article, I will present
the mathematical logic and graphical examples of the 1PL,
2PL, and 3PL models only.

One advantage of IRT over traditional testing theories
is that IRT defines a scale for the underlying latent variable
that is being measured by the test items.43 IRT assumes
that responses on a unidimensional test are underlined by a
single latent trait (h), often called the test taker’s ‘‘ability.’’
This latent trait is not able to be observed directly;
however, it can be constructed using observed responses to
the items on a test. Assuming IRT, the probability of a
response to an item on a test is conditional on h:

fiðuij hÞ ¼ PiðhÞui QiðhÞ1�ui ð10Þ

where fi(uijh ) is the function of providing response u on an
item i conditional on ability h, PiðhÞui is the probability of a
correct response (ui¼ 1), and QiðhÞ1�ui is the probability of
an incorrect response (ui¼0) Subsequently, if (ui¼1), fi(uijh )
¼ Pi(h), and if ui ¼ 0, then fi(uijh ) ¼ Qi(h). The function
connecting the means of conditional distributions (equation
10) is the regression of the item score on ability and is
referred to as the ‘‘item characteristic curve’’ (ICC). The ICC
relates the probability of providing a correct response on an
item to the ability measured by the entire test.37

The student’s ability and the item difficulty are on the
same scale; therefore, hj ¼ bi corresponds to h – b ¼ 0,
meaning that there is an exact match between an
examinee’s ability and item difficulty; hj . bi corresponds
to h – b . 0, which means that the item is easy for the
examinee’s ability level; and hj , bi means that when h – b
, 0, the item is difficult for the test taker. Thus, the
probability of providing a correct response by an examinee
j to an item i is a function of the difference between theta
and beta; formulaically,

Pðui ¼ 1j h; bÞ ¼ f ðhj � bi;Þ ð11Þ
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where f is a function that relates the ability and the
probability (ICC).

1PL Model
In this model, the probability of the response to an item

is a function of the difference between the test taker’s
ability and the item’s difficulty. The following is the
equation for 1PL:

Pðui ¼ 1jh; bÞ ¼ eDðhj�biÞ

1þ eDðhj�biÞ
ð12Þ

where D is a scaling factor, set to D¼ 1.7, so the values of
P(h) for 2-parameter normal ogive and the values for 2PL
differ by less than 0.01.

Illustration
The computing language R (an open-source environ-

ment for statistical computing and graphics) is often used
to fit IRT models to data and estimate item parameters.
Presented here is an example by means of the ‘‘irtoys’’
package44 to fit various IRT models using a set of
simulated responses (n ¼ 2000) to a 40-item test. The
items were scored dichotomously. Table 1 presents
estimates of model parameters and associated standard
errors for the 1PL model. The item difficulty is the only
parameter that was estimated, while the item discrimina-
tion was fixed at 1. Figure 1a presents the ICC curves for
the 40 items. The curves differ by their location in relation
to the x-axis, which is a reference scale for the test takers’
ability and item difficulty—more difficult items are to the
right, while less difficult items are to the left. The 1PL
model assumes that all items relate to the latent trait
(ability) equally and differ only in the amount of difficulty.

Figure 1b presents the item information functions (IIF)
for the 40 items. The IIF shows the point on the ability
scale for which the item provides maximum information.
Assuming that these curves are Gaussian, the ranges of
ability for which an item provides the most information
can be estimated using the 3-sigma empirical rule.45 The
IIF depends on the slope of the item response function as
well as the conditional variance at each ability level. The
greater the slope and the smaller the variance, the greater
the information and the smaller the standard error of
measurement (SEM).32 In 1PL, the slopes are held
constant; therefore, there is no variability in the height of
the curves.

2PL Model
The 2PL model estimates another parameter—the

discrimination of an item, seen as the slope of the ICC.
The discrimination is between those test takers who know
the right answer and the population of test takers who do
not demonstrate that knowledge. The items with better
discriminating qualities have steeper slopes. The following
equation represents the 2PL model:

Pðui ¼ 1jh; a; bÞ ¼ eDaiðhj�biÞ

1þ eDaiðhj�biÞ
ð13Þ

where ai is the discrimination parameter for item i. Table 2

presents the model parameter estimates and related

standard errors for the 2PL model. Figure 2a presents

the ICCs for the same 40 items as Figure 1a; it is now

obvious that some items are better at discriminating

between the 2 populations (have steeper slopes) than

others.

The estimation of the slope relaxes the assumption of an

invariant relationship between the items and the latent

trait. This relationship can now be estimated, and it is

similar to the factor loadings in factor analysis.46 The items

with higher discrimination coefficients are more responsive

to small changes in the latent trait, whereas the items with

low discrimination coefficients require large changes in the

latent trait to reflect a change in the probability. Figure 2b

Figure 1 - a) Item characteristic curves for the 40 items, 1-
parameter logistic model. b) Item information functions for the
40 items, 1-parameter logistic model.
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presents the items’ information curves, which now show
variability in the amount of information they provide.

3PL Model
The 3PL model is a 2PL model with an additional

parameter, ci, which is the lower asymptote of the ICC and
represents the probability of a test taker with a low ability
providing a correct answer to an item i. The inclusion of
this parameter suggests that test takers who score low on
the latent trait may still provide a correct response by
chance. This parameter is referred to as ‘‘guessing.’’ The
following is the mathematical representation of the 3PL
model:

Pðui ¼ 1jh; a; b; cÞ ¼ ci þ ð1� ciÞ
eDaiðhj�biÞ

1þ eDaiðhj�biÞ
ð14Þ

where ci is the guessing parameter. Referring back to
equation 14, if a test taker guessed (ci ¼ 1), then the
probability of the correct response is entirely explained by
guessing (the term after the plus sign disappears).
However, if the test taker did not guess (ci¼ 0), the model
defaults to the 2PL. Table 3 presents model parameter
estimates for the 3PL, while Figure 3a and b presents ICCs
and IIFs, respectively, for the 40 items.

Polytomous IRT Models
Various polytomous IRT models have been developed

to account for ordered categorical responses. Samejima47

developed a logistic model for graded responses in which
the probability that an examinee j with a particular level of
ability will provide a response to an item i of the category k
is the difference between the cumulative probability of a

Table 1 - Item-Parameter Estimates, 1-Parameter Logistic Model (N/A ¼ Not Applicable)

Item a b c SE a SE b SE c

1 1 �1.17 N/A N/A 0.08 N/A
2 1 �1.66 N/A N/A 0.09 N/A
3 1 �1.71 N/A N/A 0.10 N/A
4 1 �1.24 N/A N/A 0.09 N/A
5 1 �2.87 N/A N/A 0.14 N/A
6 1 �3.34 N/A N/A 0.17 N/A
7 1 �3.78 N/A N/A 0.20 N/A
8 1 �3.32 N/A N/A 0.16 N/A
9 1 �2.30 N/A N/A 0.11 N/A
10 1 �3.15 N/A N/A 0.15 N/A
11 1 �1.18 N/A N/A 0.09 N/A
12 1 1.60 N/A N/A 0.09 N/A
13 1 0.31 N/A N/A 0.08 N/A
14 1 �0.60 N/A N/A 0.08 N/A
15 1 �1.26 N/A N/A 0.09 N/A
16 1 �3.82 N/A N/A 0.20 N/A
17 1 �1.67 N/A N/A 0.09 N/A
18 1 �3.17 N/A N/A 0.15 N/A
19 1 �3.75 N/A N/A 0.20 N/A
20 1 �1.67 N/A N/A 0.09 N/A
21 1 0.32 N/A N/A 0.08 N/A
22 1 0.48 N/A N/A 0.08 N/A
23 1 �0.82 N/A N/A 0.08 N/A
24 1 �1.49 N/A N/A 0.09 N/A
25 1 �2.68 N/A N/A 0.13 N/A
26 1 �0.58 N/A N/A 0.08 N/A
27 1 �0.92 N/A N/A 0.08 N/A
28 1 �1.56 N/A N/A 0.09 N/A
29 1 0.00 N/A N/A 0.08 N/A
30 1 �2.03 N/A N/A 0.10 N/A
31 1 �1.67 N/A N/A 0.09 N/A
32 1 �1.70 N/A N/A 0.09 N/A
33 1 �1.27 N/A N/A 0.09 N/A
34 1 �1.86 N/A N/A 0.10 N/A
35 1 �2.62 N/A N/A 0.12 N/A
36 1 �2.42 N/A N/A 0.12 N/A
37 1 �1.45 N/A N/A 0.09 N/A
38 1 �1.90 N/A N/A 0.10 N/A
39 1 �0.64 N/A N/A 0.08 N/A
40 1 �1.47 N/A N/A 0.09 N/A
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response to that category or higher and the cumulative
probability of a response to the next highest category or
higher. Consider the following:

�PijkðhÞj ¼ P 0
ijkðhÞj � P 0

ijkþ1ðhÞj

P 0
ijkðhÞj ¼

1

1þ exp½�Daiðhj � bikÞ�

where bik is the difficulty parameter for category ki and ai is
the discrimination parameter for item j.47

A different model for ordered categorical response was
developed by Masters.33 In this partial credit model, the
probability that an examinee j will provide a response x on
item i with Mi thresholds is a function of student’s ability
and the difficulties from the Mi thresholds in item i is given

by the following:

Pijx ¼
exp
XX

x¼0
ðhj � bixÞXM

m¼0
ðexp

Xm

x¼0
ðhj � bixÞÞ

where x ¼ 1,2, . . ., Mi is the count of successfully

completed thresholds, and
X
ðhj � bixÞ ¼ 0.33

Samejima’s graded response model was fitted to a

simulated data set of n¼ 1500 responses to 10 polytomous

items scored using the following categories: 0, 1, 2, and 3.

Table 4 presents model-based parameter estimates; Figure

4a presents ICC curves for items 1–4 of the 10 polytomous

items. Figure 4b and c presents ICC curves for items 5–8

and 9 and 10, respectively.

Table 2 - Item-Parameter Estimates, 2-Parameter Logistic Model (N/A ¼ Not Applicable)

Item a b c SE a SE b SE c

1 0.39 �2.77 N/A 0.09 0.67 N/A
2 0.70 �2.33 N/A 0.12 0.35 N/A
3 0.62 �2.66 N/A 0.11 0.45 N/A
4 0.81 �1.55 N/A 0.11 0.20 N/A
5 0.84 �3.47 N/A 0.18 0.62 N/A
6 1.01 �3.48 N/A 0.22 0.60 N/A
7 0.84 �4.57 N/A 0.25 1.17 N/A
8 1.35 �2.81 N/A 0.24 0.36 N/A
9 0.89 �2.65 N/A 0.15 0.37 N/A
10 1.39 �2.64 N/A 0.24 0.31 N/A
11 1.00 �1.26 N/A 0.12 0.14 N/A
12 0.45 3.30 N/A 0.11 0.74 N/A
13 0.88 0.37 N/A 0.11 0.09 N/A
14 0.78 �0.77 N/A 0.10 0.13 N/A
15 0.50 �2.36 N/A 0.10 0.46 N/A
16 0.64 �5.82 N/A 0.25 2.04 N/A
17 0.41 �3.75 N/A 0.11 0.93 N/A
18 0.87 �3.71 N/A 0.20 0.70 N/A
19 1.06 �3.76 N/A 0.26 0.73 N/A
20 0.77 �2.16 N/A 0.12 0.30 N/A
21 0.79 0.41 N/A 0.10 0.10 N/A
22 0.12 3.48 N/A 0.08 2.32 N/A
23 0.49 �1.57 N/A 0.09 0.31 N/A
24 0.57 �2.49 N/A 0.11 0.44 N/A
25 0.70 �3.75 N/A 0.16 0.75 N/A
26 0.75 �0.77 N/A 0.10 0.13 N/A
27 0.16 �5.10 N/A 0.09 2.73 N/A
28 1.08 �1.57 N/A 0.14 0.16 N/A
29 0.25 0.02 N/A 0.08 0.26 N/A
30 0.33 �5.66 N/A 0.12 1.94 N/A
31 0.92 �1.89 N/A 0.13 0.23 N/A
32 0.32 �4.90 N/A 0.11 1.58 N/A
33 0.66 �1.88 N/A 0.11 0.28 N/A
34 0.76 �2.45 N/A 0.13 0.35 N/A
35 1.64 �2.01 N/A 0.23 0.18 N/A
36 0.53 �4.33 N/A 0.14 1.04 N/A
37 0.81 �1.80 N/A 0.12 0.23 N/A
38 0.52 �3.45 N/A 0.12 0.72 N/A
39 0.39 �1.49 N/A 0.09 0.36 N/A
40 0.62 �2.26 N/A 0.11 0.36 N/A
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Equating
Measurements of the same construct collected at

different times or by different forms must be brought to
the same scale to be comparable. In the field of testing,
when tests are used to make high-stakes decisions, the
scores for examinees who took the test on 1 occasion using
1 test form should be comparable to the scores of
examinees who took the test on another occasion using a
different test form. Due to the security of test programs, it
is common practice to administer different forms of the
test on different testing occasions. However, it is hard to
construct 2 truly parallel forms, and often these test forms
differ in difficulty. Yet it is important to avoid a situation
where 1 group of test takers has an unfair advantage
because they were administered an easier form of the

exam.48 Therefore, the test scores must be equated to
account for the possible differences in difficulty between
the test forms or differences in ability between the groups
of test takers.

Equating is a statistical process used to adjust scores on
test forms so that scores on the forms can be used
interchangeably.36 After equating, alternate forms of the
same test yield scaled scores that can be used interchange-
ably even though they are based on different sets of
items.49 It is important to point out that statistical
adjustment is not possible for differences in content. The
responsibility for the content equivalence between 2 forms
of a test lies entirely on test developers.

For the past 30 years, equating has received much
deserved attention and research. Many new equating

Figure 2 - a) Item characteristic curves for the 40 items, 2-
parameter logistic model. b) Item information functions for the
40 items, 2-parameter logistic model.

Figure 3 - a) Item characteristic curves for the 40 items, 3-
parameter logistic model. b) Item information functions for the
40 items, 3-parameter logistic model.

J Chiropr Educ 2019 Vol. 33 No. 2 � DOI 10.7899/JCE-18-22 � www.journalchiroed.com 159

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-09-19 via free access



Table 3 - Item-Parameter Estimates, 3-Parameter Logistic Model (N/A ¼ Not Applicable)

Item a b c SE a SE b SE c

1 0.37 �2.68 0.05 0.97 0.46 0.04
2 0.71 �2.30 0.00 0.17 0.78 0.69
3 0.86 �0.84 0.49 0.71 0.76 0.11
4 0.79 �1.50 0.04 0.35 0.86 0.53
5 0.82 �3.42 0.09 0.11 0.69 0.10
6 1.01 �3.28 0.17 0.13 0.44 0.10
7 0.81 �4.60 0.07 0.37 0.11 0.47
8 1.32 �2.84 0.04 0.84 0.48 0.11
9 1.14 �1.18 0.56 0.37 0.83 0.31
10 2.98 �0.88 0.76 0.38 0.20 0.08
11 0.97 �1.26 0.01 0.15 0.41 0.17
12 0.77 2.82 0.08 0.41 0.15 1.06
13 0.89 0.37 0.00 0.43 0.82 0.24
14 0.85 �0.53 0.08 0.14 0.94 0.73
15 1.84 0.70 0.64 0.13 0.82 0.14
16 0.64 �5.75 0.06 2.20 0.34 0.04
17 0.92 0.34 0.67 1.00 0.29 0.06
18 0.90 �3.59 0.03 0.42 0.58 0.19
19 0.98 �3.89 0.09 0.39 0.50 0.15
20 0.88 �1.33 0.31 0.17 0.53 0.07
21 0.87 0.56 0.05 0.19 0.54 0.09
22 0.22 6.28 0.24 0.46 0.30 0.10
23 0.49 �1.48 0.02 0.12 0.66 0.35
24 0.57 �2.42 0.03 0.30 0.63 0.18
25 0.86 �2.02 0.55 0.41 0.59 0.13
26 0.82 �0.49 0.09 0.51 0.42 0.11
27 0.17 �3.94 0.10 0.09 0.60 0.10
28 1.07 �1.51 0.05 0.10 1.16 0.12
29 0.96 2.10 0.41 0.10 0.51 0.03
30 0.33 �5.40 0.07 0.11 0.10 0.02
31 1.25 �0.82 0.41 0.13 0.65 0.11
32 0.44 �1.28 0.52 0.49 0.53 0.15
33 0.67 �1.85 0.00 0.30 1.04 0.38
34 0.72 �2.48 0.04 0.35 0.44 0.15
35 1.63 �2.03 0.00 0.09 0.15 0.03
36 0.52 �4.34 0.02 0.45 0.68 0.14
37 1.54 �0.15 0.53 1.45 0.26 0.04
38 1.69 0.37 0.74 0.12 0.15 0.01
39 0.37 �1.54 0.01 0.71 0.95 0.34
40 5.72 0.60 0.70 1.16 0.42 0.06

Table 4 - Item-Parameter Estimates, Graded Response

Item b1 b2 b3 a

1 �0.97 �0.56 �0.13 5.51
2 �2.64 �1.84 �0.55 2.00
3 �2.94 �1.22 0.26 1.23
4 �1.27 �0.6 0.68 0.77
5 �3.77 �1.98 0.25 0.93
6 �1.61 �0.57 0.46 1.23
7 �2.14 �0.87 0.81 1.39
8 �1.96 �0.48 1.22 1.19
9 �0.62 1.75 2.94 0.66
10 �1.59 �0.47 1.07 1.76
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Figure 4 - a) Item characteristic curves for items 1-4, graded response. b) Item characteristic curves for items 5-8, graded
response. c) Item characteristic curves for items 9 and 10, graded response.
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methods have been proposed and tested in both research
and operational testing programs. I will introduce only
general principles related to equating here, as my goal is to
make the reader aware of the procedure. Those who wish
to expand their knowledge of equating should turn to the
literature published in the field of educational measure-
ment.

The first step in the process of equating is to decide on
an equating design. Test scores can be equated using either
the same populations or the same items. Single-group
design assumes that 2 test forms can be equated if they are
given to the same population of examinees. Since the same
examinees take both tests, the difficulty levels are not
confounded by the ability of the examinees.37 Equivalent-
group design assumes that 2 test forms are given to similar
but not the same populations of examinees. Reasonable
group equivalence may be achieved through random
assignment.13

Common-item design requires that both forms of the test
contain a set of the same items, usually called ‘‘anchor’’
items; the forms are then administered to different
populations of examinees. Subsequently, a function that
relates the statistics computed for each anchor set will
account for the differences in difficulty. This mathematical
function is then used to equate the nonanchor items on
both forms.36,37

An appropriate equating methodology must be chosen,
depending on which theoretical framework is preferred by
the testing program, to obtain the test-taker statistics and
the item-level statistics. Equating methods have been
developed based on both CTT and IRT. When pairs of
statistical values for 2 forms have been obtained, a decision
is made regarding the methods to be used to relate these
exams. Several methods can be selected from the frame-
work of linear modes for this; they include regression
methods, mean and sigma procedures, or characteristic
curves methods.

Linking
Equating is the strongest form of linking. The tests

can be similar or even equivalent in content and
different in difficulty, or they can be different in content
and also in difficulty. When tests are different in
content, the scores obtained on these exams may still
need to be put on the same scale. In this case, the
statistical process of adjusting the scores for difficulty is
called linking. When linking is used for equating, the
relationship is invariant across different populations.36

The term equating is reserved for the situation when
scores from 2 tests of the same content are linked. The
statistical procedures used in equating may not differ for
linking; however, no linking procedures can adjust for
differences in content.

Conclusion
This article presents researchers and clinicians in the

health sciences with an introduction to educational
measurement—the history, theoretical frameworks of the
CTT and IRT, and the most common IRT models used in
modern testing.
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